Материалов:
1 005 012

Репозиториев:
30

Авторов:
761 409

Линейные алгебры Ли, состоящие из нильпотентных эндоморфизмов

Дата публикации: 2020

Дата публикации в реестре: 2020-05-12T08:49:19Z

Аннотация:

Исследование линейных групп Ли сопряжено, с одной стороны, с более общей задачей изучения произвольных линейных групп, с другой стороны, линейные группы Ли тесно связаны с алгебраическими группами. Цель работы – описание с точностью до сопряженности подалгебр алгебры Ли gl(4, С), состоящих из нильпотентных эндоморфизмов. Решение этой задачи является первым шагом в классификации всех подалгебр алгебры Ли gl(4, С). Определены основные понятия: линейная алгебра Ли, разделяющая алгебра Ли, разделяющая оболочка, линейный нильрадикал, подалгебра Мальцева, разложение Мальцева, ступень нильпотентности. Приведен алгоритм классификации линейных алгебр ступени нильпотентности n по алгебре ступени n – 1, а также показано, что решение задачи классификации подалгебр алгебры Ли gl(4, С) сводится к классификации линейных алгебр Ли, состоящих из нильпотентных эндоморфизмов, классификации максимальных разделяющих алгебр Ли с каждым линейным нильрадикалом, классификации немаксимальных разделяющих алгебр Ли и классификации неразделяющих линейных алгебр Ли с каждой разделяющей оболочкой. Рассмотрено в явном виде описание линейных алгебр Ли на четырехмерном пространстве, состоящих из нильпотентных эндоморфизмов. Алгоритмы, приведенные в работе, могут быть компьютеризованы и использованы для решения аналогичных задач в больших размерностях.

Тип: Article


Связанные документы (рекомендация CORE)