Изучаются трехмерные редуктивные однородные пространства, допускающие как эквиаффинную, так и нормальную связность, рассмотрен случай разрешимой группы Ли преобразований. Определены основные понятия: однородное пространство, эффективная пара, изотропно-точная пара, редуктивное пространство, (инвариантная) аффинная связность, тензор кручения, тензор кривизны, тензор Риччи, эквиаффинная (локально эквиаффинная) связность, алгебра голономии, нормальная связность. Найдены и описаны в явном виде эквиаффинные (локально эквиаффинные) и нормальные связности на трехмерных редуктивных однородных пространствах с разрешимой группой преобразований. We study three-dimensional reductive homogeneous spaces, admitting both equiaffine and normal connections. We considered the case, when Lie group of transformations is solvable. The basic notions, such as homogeneous space, an effective pair, an isotropically-faithful pair, reductive space, an (invariant) affine connection, a curvature tensor, a torsion tensor, Ricci tensor, an equiaffine (locally equiaffine) connection, holonomy algebra, a normal connection are defined. Equiaffine (locally equiaffine) and normal connections on threedimensional reductive homogeneous spaces with a solvable transformation group are found and described in an explicit form.