Материалов:
1 005 012

Репозиториев:
30

Авторов:
761 409

Использование машинного обучения для прогнозирования отключений электроэнергии на ЛЭП 110 кВ на основе параметров самих ЛЭП

Дата публикации: 2025-02

Дата публикации в реестре: 2025-02-11T13:40:51Z

Аннотация:

В рамках данного исследования предложено использование алгоритмов машинного обучения для прогнозирования отключений электрической энергии на линиях электропередачи 110 кВ на основе данных по параметрам самих линий. В качестве алгоритмов машинного обучения были опробованы 5 классификаторов: машина опорных векторов, логистическая регрессия, случайный лес, градиентные бустинги LightGBM Classifier и CatBoostClassifier. Для автоматизации процесса преобразования данных и устранения возможности их утечки использовался пайплайн и компоновщик разнородных признаков, данные для прогнозирования подготавливались методами горячего кодирования для категориальных переменных и стандартизации для количественных. Обучение модели производилось методом кросс-валидации со стратифицированным разделением. Настройка гиперпараметров классификаторов осуществлена методами оптимизации случайных параметров и сеточного поиска. Сравнение качества предсказания обученных моделей производилось по метрикам ROC-AUC, AUC-PR, Accuracy, точность, полнота и F-1 мера. Наилучшие результаты прогнозирования отключений удалось достичь модели логистической регрессии с методом взвешивания классов в качестве борьбы с дисбалансом классов, метрика ROC-AUC которой на тестовой выборке достигла 0.84. Таким образом, данное исследование подтверждает возможность использования данных по параметрам ЛЭП для прогнозирования отключений электрической энергии на ЛЭП 110 кВ

Тип: Journal Article


Связанные документы (рекомендация CORE)