Изучается задача Дирихле в полупространстве для эллиптических уравнений, содержащих, кроме дифференциальных операторов, операторы сдвига, действующие по тангенциальным (пространственноподобным) переменным, т.е., независимымпеременным, изменяющимся на всей вещественной оси. Краевая функция задачи предполагается суммируемой, что в классическом случае дифференциальных эллиптических уравнений соответствует ситуации, в которой возможны только решения с конечной энергией.Рассматриваются два (принципиально различных) случая: случай, в котором исследуемое уравнение содержит суперпозиции дифференциальных операторов и операторов сдвига, и случай, когда оно содержит их суммы (т.е. является уравнениемс нелокальными потенциалами). Для обоих типов задач строится интегральное представление решения указанной задачи в смысле обобщенных функций, доказывается егобесконечная гладкость в открытом полупространстве (т.е. вне краевой гиперплоскости)и доказывается его равномерное стремление к нулю (а также равномерное стремлениек нулю любой его производной) при стремлении к бесконечности времениподобной переменной (т.е. единственной независимой переменной, изменяющейся на положительной полуоси). Скорость этого стремления к нулю - степенная; порядок степени равенсумме размерности пространственноподобной независимой переменной и порядка производной решения.Излагаются наиболее общие (на текущий момент) результаты: сдвиги независимых переменных допускаются в произвольных (тангенциальных) направлениях, а там, гдесдвигов несколько, на их величины не накладывается никаких условий соизмеримости. Таким образом, так же как и в классическом случае, задачи с суммируемыми краевыми функциями принципиальным образом отличаются от изученных ранее задач ссущественно ограниченными краевыми функциями: последние, как установлено ранее,допускают решения, не имеющие предела при стремлении времениподобной переменной к бесконечности, а наличие или отсутствие такого предела определяется условиемстабилизации Репникова-Эйдельмана.