Дата публикации в реестре: 2020-03-03T14:09:54Z
Аннотация:Получены точные дисперсионные уравнения для плоского симметричного диэлектрического анизотропного волновода, в котором изотропным является волноведущий слой, а обрамляющие среды предполагаются анизотропными одноосными средами. Тензоры диэлектрической проницаемости обрамляющих сред при этом не предполагаются диагональными, а именно - у одной из них этот тензор образован путём поворота диагонального тензора на некоторый угол между оптической осью анизотропной среды и направлением распространения электромагнитной волны. Тензор диэлектрической проницаемости другой анизотропной среды повёрнут на такой же угол, но в противоположном направлении, при этом оптические оси обеих обрамляющих сред лежат в плоскости, параллельной границам волноведущей структуры. Таким образом, в обрамляющих средах поддерживается существование шестикомпонентных электромагнитных волн. В дисперсионных свойствах такого волновода наблюдаются некоторые особенности, по сравнению со случаем, когда обрамляющие среды предполагаются изотропными. Обнаружено, что первая симметричная мода такого волновода имеет конечное замедление при нулевой толщине изотропного слоя, что говорит о возможности возникновения поверхностных электромагнитных волн (так называемых волн Дьяконова) на границах этого изотропного слоя. Отмечено, что переход антисимметричной моды в Дьяконовскую волну происходит при конечной толщине волноведущего слоя. Приведены зависимости величины замедления элементарной (симметричной) моды от угла поворота оптической оси анизотропных сред относительно направления распространения направляемой волны волноводной структуры. Кроме дисперсионных свойств такого волновода исследованы поперечные распределения полей направляемой электромагнитной волны, приведены точные аналитические выражения для амплитуд полей этой волны.
Тип: Article
Права: open access
Источник: RUDN Journal of Mathematics, Information Sciences and Physics