Рассматривается псевдоспектральный метод решения обыкновенных дифференциальных уравнений. Для аппроксимации искомого решения используется разложение функции в ряд по ортогональному базису, а конкретно - по полиномам Чебышева первого рода. Метод коллокации требует обращения в ноль невязки в некоторых точках интервала, на котором ищется решение. В статье рассмотрены численные методы аппроксимации искомой функции по полиномам Чебышева на сетках Гаусса-Лобатто и аппроксимации производной с использованием матриц дифференцирования. В качестве конкретного примера рассмотрено решение линейного дифференциального уравнения Бесселя. Полученные численные результаты демонстрируют эффективность рассматриваемого подхода.