Рассматривается уравнение временной структуры для цены бескупонной облигации, решение которого в аналитическом виде известно в основном для простейших моделей и имеет аффинную структуру по отношению к краткосрочной ставке. Конструируются решения этого уравнения для некоторого семейства моделей временной структуры, которые основываются на процессах краткосрочной ставки, в стохастических дифференциальных уравнениях которых квадрат волатильности пропорционален третьей степени краткосрочной ставки. Решение уравнения ищется в виде определенного функционального ряда и в итоге приводится к вырожденной гипергеометрической функции. Рассматриваются три версии, лежащие в основе стохастических дифференциальных уравнений для процессов краткосрочной ставки: с нулевым дрейфом, с линейным дрейфом и с квадратичным дрейфом. Приводятся численные примеры для кривой доходности и кривой форвардных ставок для указанных версий. Формулируются некоторые условия существования нетривиальных решений уравнения временной структуры в рассматриваемом семействе процессов.