Материалов:
1 081 645

Репозиториев:
30

Авторов:
761 409

Properties of associated Boolean functions of quadratic APN functions

Дата публикации: 2019

Дата публикации в реестре: 2020-03-03T18:38:12Z

Аннотация:

For a function F : Fn Fn, it is defined the associated Boolean function yF in 2n variables as follows: yF(a, b) = 1 if a = 0 and equation F(x) + F(x + a) = b has solutions. A vectorial Boolean function F from F2n to F2n is called almost perfect nonlinear (APN) if equation F(x) + F(x + a) = b has at most 2 solutions for all vectors a, b 6 F2n, where a is nonzero. In case when F is a quadratic APN function its associated function has the form yF(a, b) = Фр(a) • b + ^F(a) + 1 for appropriate functions Фр : Fn Fn and : Fn F2. We study properties of functions Фр and ^F, in particular their degrees.

Тип: статьи в журналах

Источник: Прикладная дискретная математика. Приложение. 2019. № 12. С. 77-79

Другие версии документа

A note on the properties of associated Boolean functions of quadratic APN functions

Связанные документы (рекомендация CORE)