Рассматриваются уравнения первого рода со степенно-логарифмическими ядрами с действительными степенями логарифмов в пространстве абсолютно непрерывных на ограниченной пирамидальной области функций. К таким уравнениям приводят задачи как из некоторых разделов математики, в частности дифференциальных уравнений, так и из физики, механики и других естественных наук. При этом проблема обращения с точки зрения приложений является одной из центральных. С этой проблемой тесно связана задача получения условий разрешимости рассматриваемых уравнений в различных пространствах. Ограничимся в данной работе случаем абсолютной непрерывности весовой функции и значениями параметра на промежутке 0 < α < 1 (α = (α[1], …, α[n])). Решение подобного уравнения с целыми степенями логарифма было представлено в работе [1], но с использованием производной от выражения, содержащего интеграл от свободного члена с функцией Вольтерра в ядре. Там же была предложена идея решения уравнения с действительной степенью логарифма. В публикации [2] были анонсированы достаточные условия разрешимости рассматриваемого уравнения в пространстве абсолютно непрерывных на отрезке функций и представлен другой вид решения в терминах правой части (одномерный случай). Данная работа является продолжением исследования задачи в этом направлении и расширяет результаты [2] на случай многомерной пирамидальной области.
Уравнение решается методами дробного интегрирования с использованием обобщения на многомерную пирамидальную область классических интегралов Римана – Лиувилля, специальных функций Вольтерра и операторов типа свертки. Теория дробных интегралов и методика их применения к решению различного рода прикладных задач достаточно полно описана в работах [1] и [3].