Мы рассматривем конечные полуполя, то есть дистрибутивные квазиполя, и конечные почти-поля, то есть ассоциативные квазиполя. Квазиполе Q называем минимальным собственным квазиполем, если всякое его подквазиполе H ̸= Q является подполем. Оказывается, существует
минимальное собственное почти-поле, мультипликативная группа которого есть группа Миллера–
Морено. Найден алгоритм построения минимального собственного почти-поля, в котором количество максимальных подполей больше любого заданного числа. Таким образом, получен ответ
на вопрос: существует ли такое натуральное число N, что количество максимальных подполей в произвольном почти-поле меньше N? Доказано, что всякое полуполе порядка p4 (p – простое) есть минимальное собственное полуполе