Данная статья посвящена дальнейшему исследованию свойства ряда вершин выпуклых оболочек, порожденных независимыми наблюдениями двумерного случайного вектора с
регулярными распределениями вблизи границы носителя, когда он является единичным диском.
Следуя П. Гренебуму [4], биномиальный точечный процесс аппроксимируем пуассоновским точечным процессом вблизи границы опоры и строим вершинные процессы выпуклых оболочек. Исследованы свойства сильного перемешивания и мартингальности вершинных процессов. Используя
эти свойства, получаем асимптотические выражения для ожиданий и дисперсии вершинных процессов, которые соответствуют результатам, ранее полученным H. Карнала [2]. Далее, используя
свойства сильного перемешивания вершинных процессов, доказываем центральную предельную
теорему для ряда вершин выпуклой оболочки