Известно, что краевые задачи для уравнений Лапласа и Пуассона эквивалентны задаче вариационного исчисления – о минимуме интеграла, для которого данное уравнение в частных производных является уравнением Эйлера – Лагранжа. Например, задача о минимуме интеграла Дирихле в единичном круге с центром в начале координат на некотором допустимом множестве функций при заданных значениях нормальной производной на окружности эквивалентна краевой задаче Неймана для уравнения Лапласа в этой области. На основе известного точного решения краевой задачи Неймана для круга с помощью специальной приближенной формулы для интеграла Дини сконструировано эффективное приближенное представление дилогарифмами решения указанной выше эквивалентной вариационной краевой задачи. Приближенная формула эффективна в том смысле, что она достаточно проста при численной реализации, устойчива, а равномерная по кругу оценка погрешности позволяет проводить вычисления с заданной точностью. Специальная квадратурная формула для интеграла Дини обладает замечательным свойством – ее коэффициенты неотрицательны. Квадратурные формулы с неотрицательными коэффициентами занимают особое место в теории приближенных вычислений определенных интегралов и ее приложениях. Естественно, что еще большую значимость это свойство приобретает, когда коэффициенты не числа, а некоторые функции. Проведенный численный анализ приближенного решения подтверждает его эффективность.