В статье доказан аналог теоремы Малера-Спринджука для целых алгебраических чисел, связанный с классификацией действительных и комплексных чисел. Согласно классификации Малера, все действительные числа попадают в один и тот
же класс, если минимальное значение целочисленных полиномов в этих точках имеет один и тот же порядок малости относительно высоты этих полиномов. Аналогичная проблема для целых алгебраических чисел до сих пор рассматривалась только в частном случае, в работе впервые получено не только значение меры множеств действительных и комплексных чисел с заданным порядком приближаемых целыми алгебраическими числами, но и полный аналог классической теоремы А.Я. Хинчина о приближении действительных чисел рациональными. Доказательство основано на построении оптимальной регулярной системы и обобщении метода существенных и несущественных областей, разработанного В.Г. Спринджуком.