В монографии изложен тетрадный метод обобщения уравнений для частиц различных спинов, учитывающий неевклидовую геометрию пространства-времени. В пространствах постоянной кривизны Лобачевского и Римана найдены точные решения Шредингера Дирака во внешнем магнитном поле. На основе матричного формализма Даффина-Кеммера-Петье в пространстве Минковского найдены точные решения релятивистского уравнения для частицы со спином 1 во внешнем магнитном поле, выполнен анализ этой задачи также в нерелятивистском приближении.