Материалов:
1 005 021

Репозиториев:
30

Авторов:
761 409

К задачам двухуровневой оптимизации с условием регулярности RCPLD

Дата публикации: 2019

Дата публикации в реестре: 2021-08-05T17:49:34Z

Аннотация:

Задачи многоуровневой оптимизации часто встречаются в различных приложениях (в экономике, экологии, энергетике и других областях) при моделировании сложных систем с иерархической структурой, связанной с неравноправным положением и самостоятельными действиями подсистем. Трудность анализа такого рода сложных систем требует в первую очередь изучения двухуровневых моделей, управление которыми явилось бы составной частью анализа более сложных систем. При решении задач двухуровневого программирования важную роль играет предложенное учеными Ye и Zhu свойство частичной устойчивости, наличие которого позволяет свести двухуровневую задачу к классической задаче нелинейного программирования с негладкой целевой функцией. Известно, что линейные задачи двухуровневого программирования являются частично устойчивыми. Доказательство данного свойства для более сложных задач встречает трудности. В частности, в статье показывается неверность некоторых известных ранее результатов в этой области. Целью данной статьи является доказательство новых результатов по частичной устойчивости задач двухуровневого программирования. Вывод данных результатов в статье основывается на применении обобщенных липшицевых свойств многозначных отображений. В данной статье выводятся новые достаточные условия частичной устойчивости, основанные на модификации известного в литературе условия регулярности RCPLD, предложенного учеными Andreani, Haeser, Schuverdt и Silva. Полученные достаточные условия обобщают известные условия частичной устойчивости для двухуровневых задач и позволяют выделить класс задач, которые могут быть решены редукцией к задаче математического программирования с негладкой целевой функцией.

Тип: Статья


Связанные документы (рекомендация CORE)