В работе приводятся основные принципы построения и обучения нейронной сети глубокого доверия для выделения семантически значимых признаков на основе выборки CIFAR-10. Для предобучения нейронной сети глубокого доверия применяется разработанных подход, базирующийся на минимизации ошибки реконструкции видимых и скрытых образов для ограниченной машины Больцмана (RBM). The main principles of construction and learning
deep belief neural networks for extraction valuable semantic features are proposed. The proposed approach is based on minimization of reconstruction mean square error, which we can obtain using a simple iterations of
Gibbs sampling.