Представлены результаты исследования траекторий движения заряженных частиц в тороидальной магнитной конфигурации типа токамак с «магнитными островами». Траектории частиц рассчитаны с помощью трёхмерного численного кода, базирующегося на численном интегрировании точных уравнений движения. Для описания островной магнитной конфигурации использован универсальный подход в терминах функции Гамильтона. Данный подход обобщает традиционное потоковое представление магнитного поля, а также обеспечивает точное выполнение условия соленоидальности. Для описания магнитной конфигурации с островами используется последовательная процедура, при которой исходная (базовая) магнитная конфигурация выбирается с системой вложенных магнитных поверхностей. При наложении на базовую магнитную конфигурацию малого винтового возмущения происходит расщепление рациональной поверхности, резонансной (по заходности) с наложенным возмущением. В окрестности такой поверхности происходит формирование цепочки магнитных островов. Проведённое исследование движения заряженных частиц показало, что наличие магнитного острова не оказывает качественного влияния на сечение Пуанкаре траектории запертой частицы, имеющей стандартную «банановую» форму, характерную для базовой конфигурации токамака. Что касается пролётной частицы, движущейся преимущественно вдоль силовой линии, то след её траектории в полоидальном сечении имеет островную структуру. Продемонстрировано, что и запертая, и пролётная частицы в своём движении могут пересекать сепаратрису, отделяющую магнитный остров от системы вложенных магнитных поверхностей; при этом пересечение может происходить в любой точке сепаратрисы. Показано, таким образом, что магнитный остров не обладает « барьерными» свойствами и не способен обеспечить улучшенное удержание заряженных частиц.