Рассматривается система массового обслуживания, в которую поступают пуассоновские потоки обычных и отрицательных заявок. Для обычных заявок имеется накопитель неограниченной ёмкости. Отрицательная заявка при поступлении в систему вытесняет одну обычную заявку из очереди в накопителе и перемещает её в бункер ограниченной ёмкости. Если в момент вытеснения заявки бункер полностью заполнен, то вытесненная заявка теряется. Если в момент прихода отрицательной заявки накопитель пуст, она покидает систему, не оказывая на неё никакого воздействия. После окончания обслуживания очередной заявки на прибор поступает заявка из накопителя или, если накопитель пуст, из бункера. Длительности обслуживания заявок, как из накопителя, так и из бункера имеют экспоненциальное распределение с одним и тем же параметром. Получены формулы для расчёта совместного стационарного распределения числа заявок в накопителе и бункере и основных вероятностных характеристик системы.