Материалов:
1 082 141

Репозиториев:
30

Авторов:
761 409

Об устойчивом приближенном решении одной некорректно поставленной краевой задачи для метагармонического уравнения

Дата публикации в реестре: 2021-08-05T20:55:35Z

Аннотация:

В работе рассматривается смешанная задача для метагармонического уравнения в области в цилиндре прямоугольного сечения. На боковых гранях цилиндрической области заданы однородные условия первого рода. Цилиндрическую область с одной стороны ограничивает поверхность общего вида, на которой заданы условия Коши, т. е. заданы функция и ее нормальная производная. Другая граница цилиндрической области - плоская - свободна. Такая задача некорректно поставлена, и для построения ее приближенного решения в случае данных Коши, известных с некоторой погрешностью, необходимо применение регуляризирующих алгоритмов. В работе рассматриваемая задача сведена к интегральному уравнению Фредгольма первого рода. На основе решения интегрального уравнения получено явное представление точного решения поставленной задачи. Устойчивое решение интегрального уравнения получено методом регуляризации Тихонова. В качестве его приближенного решения рассматривается экстремаль функционала Тихонова. На основе этого решения строится приближенное решение задачи в целом. Приведена теорема сходимости приближенного решения поставленной задачи к точному при стремлении к нулю погрешности в данных Коши и при согласовании параметра регуляризации с погрешностью в данных. Результаты работы могут быть использованы для математической обработки данных тепловидения в медицинской диагностике.

Тип: Article

Права: open access

Источник: Вестник российских университетов. Математика


Связанные документы (рекомендация CORE)