Материалов:
1 005 021

Репозиториев:
30

Авторов:
761 409

Вопросы строения конечных почти-полей

Дата публикации: 2019-11

Дата публикации в реестре: 2021-09-06T14:32:28Z

Аннотация:

Полуполем называют простое кольцо, в котором ненулевые элементы по умножению образуют лупу. К более общему понятию квазиполя (в случае ассоциативного кольца — почти-поля) приходим, ослабляя двустороннюю дистрибутивность до односторонней. Исследуемые вопросы строения конечных полуполей и квазиполей изучались в различных ситуациях уже давно. В последние годы они отмечались явно в ряде статей. Ранее эти вопросы были решены для полуполей Кнута — Руа и Хентзела — Руа — контрпримеры порядков 32 и 64 к известной гипотезе Венэ. Для описания некоторых квазиполей малых порядков использовались также методы компьютерной алгебры. Известно, что центр конечного полуполя всегда содержит простое подполе. Авторы показывают, что центр конечного почти-поля Q содержит простое подполе P кроме четырех почти-полей Цассенхауза порядков 5^2, 7^2, 11^2, 29^2. Ядро почти-поля Q всегда содержит P. При достаточно общих условиях перечислены максимальные подполя конечного почти-поля. Группы автоморфизмов почти-поля Q и его мультипликативной группы Q∗ были найдены ранее. Метацикличность группы Q∗ позволяет выписать явно спектр групповых порядков ее элементов.

Тип: Journal Article

Другие версии документа

Questions of the structure of finite near-fields=Вопросы строения конечных почти-полей

Связанные документы (рекомендация CORE)