В статье представлены результаты объединения 4‑х различных типов обучения нейронных сетей: эволюционного, с подкреплением, глубокого и экстраполирующего. Последние два используются в качестве первичного метода уменьшения размерности входного сигнала системы и упрощения процесса её обучения с точки зрения вычислительной сложности. В представленной работе нейросетевая структура управляющего устройства моделируемой системы формируется в ходе эволюционного процесса, с учётом известных на текущий момент особенностей строения и развития самообучающихся систем, имеющих место в живой природе. Данный способ его конструирования даёт возможность обойти специфические ограничения моделей, созданных на основе рекомбинации уже известных топологий нейронных сетей.