В работе представлено численное решение задачи Стефана для расчета температуры образца вольфрама, нагреваемого лазерным импульсом. Математическое моделирование проводитсядля анализа натурных экспериментов, где наблюдается мгновенный нагрев пластинки до 9000 K за счет воздействия на её поверхность теплового потока и последующее охлаждение. Задача характеризуется нелинейными коэффициентами и граничными условиями. Важную роль играет учет испарения металла с нагреваемой поверхности. Для реализации выбран метод сплошного счета с использованием формулировки уравнения теплопроводности в единообразной форме во всей области с применением дельта-функции Дирака, основанный на подходе А. А. Самарского. Численный метод имеет второй порядок аппроксимации по пространству, интервал сглаживания коэффициентов составляет 5 К. В результате получены распределения температуры на поверхности и в поперечном сечении образца в процессе охлаждения.
Тип: Article
Права: open access
Источник: Современная математика. Фундаментальные направления