Рассматривается начально-краевая задача на ограниченном интервале для класса квазилинейных эволюционных уравнений нечетного порядка (выше первого) с нелинейностью общего вида. Предположения на вид уравнения не предполагают глобальных априорных оценок для решений произвольного размера. В случае малых гранничных функций и малой правой части уравнения установлены результаты о глобальном существовании и единственности слабых решений, а также об их экспоненциальном убывании при больших временах.