Предложен общий метод построения решения уравнений замкнутых и открытых тонких оболочек с сохранением порядка дифференциальных уравнений и выполнением всех граничных условий. Соотношения упругости преобразованы к виду, позволяющему в соответствии с ранее предложенным методом Сен-Венана - Пикара - Банаха произвести итерационное вычисление всех искомых неизвестных задачи. Процедура построения решения сводится к замене восьми дифференциальных уравнений первого порядка исходной системы теории оболочек на восемь соответствующих интегральных уравнения с малым множителем, имеющим смысл отношения ширины оболочки к ее длине или изменяемости напряженно-деформированного состояния в поперечном направлении. Вычисленные путем прямого интегрирования пятнадцать неизвестных исходной задачи выражены через пять основных неизвестных. Выполнение граничных условий на длинных сторонах полосы приводит к решению восьми обыкновенных дифференциальных уравнений для медленно меняющихся и быстро меняющихся компонентов основных неизвестных. Медленно меняющиеся компоненты описывают классическое напряженно-деформированное состояние. Быстро меняющиеся - определяют краевые эффекты в точках разрыва непрерывности медленно меняющегося классического решения и выполнение неудовлетворенных ими граничных условий из-за понижения порядка дифференциальных уравнений классической теории, основанной на гипотезе Кирхгофа. В общем случае решение представляется в виде асимптотических рядов по малому параметру изменяемости с коэффициентами в виде степенных рядов по поперечной координате. Изложение проиллюстрировано примером построения итерационного процесса для длинной круговой цилиндрической панели. В силу теоремы о неподвижной точке итерационный процесс является сходящимся.