Материалов:
1 081 645

Репозиториев:
30

Авторов:
761 409

Повышение точности прогнозирования генерации фотоэлектрических станций на основе алгоритмов k-средних и k-ближайших соседей

Дата публикации: 2023

Дата публикации в реестре: 2023-09-26T11:39:29Z

Аннотация:

Возобновляемые источники энергии рассматриваются как средство снижения углеродного следа топливно-энергетического комплекса, при этом стохастический характер генерации осложняет их интеграцию с электроэнергетическими системами. Эта существенная трудность обусловливает необходимость создавать и совершенствовать методы прогнозирования генерации электрических станций, использующих энергию солнца, ветра и водных потоков. Наиболее важным направлением, обеспечивающим повышение точности прогнозных моделей, является глубокий анализ метеорологических условий как главного фактора, влияющего на выработку электроэнергии. В данной работе предложен и исследован метод адаптации прогнозных моделей под метеорологические условия работы фотоэлектрических станций на базе алгоритмов машинного обучения. При этом вначале выполняется обучение без учителя методом k-средних для формирования кластеров. Для этой задачи также предложено и исследовано использование алгоритма понижения размерности пространства признаков для визуализации оценки точности кластеризации. Затем для каждого кластера построена своя модель машинного обучения для формирования прогнозов и алгоритм k-ближайших соседей для отнесения текущих условий на этапе эксплуатации модели к одному из сформированных кластеров. Исследование было проведено на почасовых метеорологических данных за период с 1985 по 2021 г. Одной из особенностей этого подхода является кластеризация метеоусловий на часовых, а не суточных интервалах. В результате средний модуль относительной ошибки прогнозирования существенно снижается в зависимости от используемой модели прогнозирования. Для наилучшего варианта ошибка прогнозирования генерации фотоэлектрической станции на час вперед составила 9 %.

Тип: Article


Связанные документы (рекомендация CORE)