Материалов:
1 005 012

Репозиториев:
30

Авторов:
761 409

Обнаружение кибератак на интеллектуальные энергосистемы с использованием неконтролируемых моделей глубокого обучения

Дата публикации в реестре: 2023-12-05T13:47:07Z

Аннотация:

Современные интеллектуальные энергосети объединяют передовые информационные и коммуникационные технологии в традиционные энергосистемы для более эффективного и устойчивого снабжения электроэнергией, что создаёт уязвимости в их системах безопасности, которые могут быть использованы злоумышленниками для проведения кибератак, вызывающих серьезные последствия, такие как массовые перебои в подаче электроэнергии и повреждение инфраструктуры. Существующие методы машинного обучения для обнаружения кибератак в интеллектуальных энергетических сетях в основном используют классические алгоритмы классификации, которые требуют разметки данных, что иногда сложно, а то и невозможно. В данной статье представлен новый метод обнаружения кибератак в интеллектуальных энергетических сетях, основанный на слабых методах машинного обучения для обнаружения аномалий. Полуконтролируемое обнаружение аномалий использует только экземпляры обычных событий для обучения моделей обнаружения, что делает его подходящим для поиска неизвестных событий атак. В ходе исследования был проанализирован ряд популярных методов обнаружения аномалий с полууправляемыми алгоритмами с использованием общедоступных наборов данных о кибератаках на энергосистемы для определения наиболее эффективных из них. Сравнение производительности с популярными управляемыми алгоритмами показывает, что полууправляемые алгоритмы лучше способны обнаруживать события атак, чем управляемые алгоритмы. Наши результаты также показывают, что производительность полуконтролируемых алгоритмов обнаружения аномалий может быть дополнительно улучшена за счёт усовершенствования модели глубокого автоэнкодера.

Тип: Article

Права: open access

Источник: Discrete and Continuous Models and Applied Computational Science


Связанные документы (рекомендация CORE)