В статье проанализированы причины применения для напыления жаростойких подслоев теплозащитных
покрытий специальных конструкций плазмотронов, способствующих минимальному содержанию кислорода в зоне
напыления. Подробно описана разработанная авторами конструкция плазмотрона с насадкой, позволяющая улучшить защиту плазменного потока от воздействия атмосферы. Внутрь насадки вдоль ее стенок через систему отверстий в концевой части насадки подается нагретый инертный газ (Аr). Воздух вокруг плазменной струи вытесняется, происходит дополнительное сжатие плазмы, в результате чего в покрытии уменьшается содержание кислорода и повышается эффективность осаждения материала. Дополнительное применение вольфрамовой вставки в электронном узле позволит создать пару вольфрам – вольфрам в электродном узле, что за счет высокой эрозионной стойкости, электропроводимости, теплопроводности и достаточной прочности увеличит ресурс электродного узла в 2–2,5 раза при повышении производительности напыления из-за ужесточения режимов. Приведены результаты испытаний разработанного плазмотрона и аналога на длительность непрерывной работы и интенсивность при токе 500 А, напряжении 70 В, расходе азота 45 л/мин (стандартный режим напыления оксидной керамики). На плазмотронах при одинаковых параметрах напыления получены покрытия из порошка никель–хром–алюминий–иттрий и проведен сравнительный анализ технологических свойств. Разработанный плазмотрон имеет более качественные характеристики плазменных подслойных покрытий: увеличение прочности сцепления – в 1,4 раза, коэффициента использования материала – в 1,3 раза, микротвердости – в 1,3 раза, уменьшение пористости – в 2,3 раза.