Цель работы – разработка нейросетевых алгоритмов, предназначенных для семантической сегментации спутниковых снимков поверхности Земли. Несмотря на обилие существующих алгоритмов сегментации и компьютерного зрения, эта задача все еще требует повышения качества их работы. Хотя данная область науки сегодня активно развивается, актуальна необходимость повышения качества сегментации спутниковых изображений поверхности Земли. При проведении анализа существующих методов и алгоритмов, решающих задачу семантической сегментации изображений, выявлено, что наиболее подходящими для этого алгоритмами являются глубокие нейронные сети. В процессе выполнения работы разработан ряд архитектур сверточных нейронных сетей класса автоэнкодеры с целью выявления более эффективной архитектуры. Нейронные сети реализованы при использовании библиотеки машинного обучения Keras. В качестве обучающей и тестовой выборок использованы спутниковые снимки ОАЭ, находящиеся в открытом доступе. Реализована модель нейронной сети класса автоэнкодеры. Сегментация выполнялась на шесть классов объектов: дома, дороги, растения, вода, суша, нейтральные объекты.