В данной статье рассматривается задача, описывающая распространение поверхностных волн в слое неоднородной жидкости. Приведена математическая модель, описывающая волновые движения на поверхности идеальной экспоненциально стратифицированной жидкости. В уравнениях и граничных условиях совершен переход к безразмерным переменным и величинам. Далее приведен линейный вариант задачи, решение которой находится в виде прогрессивных волн установившегося вида, с неизвестными амплитудными коэффициентами. Данный вид решения подставляется в уравнения и граничные условия линейной задачи, что позволяет свести определение неизвестных величин к задаче на решение системы обыкновенных дифференциальных уравнений. В результате решения системы выявлены две области физических параметров с различным характером волнового движения. Получены выражения для неизвестных компонент скорости жидкости, давления, формы свободной поверхности и частоты волны. Проведен анализ влияния на волновое движение различных параметров задачи: построены графики зависимости фазовой скорости волны от параметра стратификации при различной глубине слоя и длине волны. Для большего понимания характера волнового движения определены выражения для траекторий частиц жидкости. Для этого с помощью полученных выражений для компонент вектора скорости выписаны уравнения движения частиц, для решения которых используется метод асимптотических приближений. Проведен графический анализ влияния на форму траектории частицы величины параметра стратификации. Выявлено, что увеличение стратификации ведет к сжатию траектории в вертикальном направлении.