В общем случае задача исследования многообразий различных типов и структур на них является достаточно сложной, поэтому данная задача рассматривается в классе редуктивных однородных пространств, среди которых широкий подкласс образуют пространства с разрешимой группой преобразований. Исследование таких пространств существенно затруднено тем, что, в отличие от полупростых групп преобразований, не разработана структурированная теория их классификации, а сама классификация является громоздкой и трудоемкой. Если однородное пространство является редуктивным, то оно всегда допускает инвариантную связность. В работе изучаются трехмерные редуктивные однородные пространства, допускающие как эквиаффинную, так и нормальную связность. Найдены и описаны в явном виде тензоры Риччи инвариантных связностей на трехмерных редуктивных однородных пространствах с разрешимой группой преобразований.