Для повышения точности работы системы реидентификации людей предлагается комплексный подход при формировании обучающей выборки для свёрточных нейронных сетей, предполагающий использование нового набора изображений, увеличение количества тренировочных примеров за счет существующих баз данных и применение ряда преобразований для повышения их разнообразия. Созданный набор данных PolReID1077 содержит изображения людей, которые были получены во все времена года, что позволит повысить корректность работы систем реидентификации при смене сезонов. ПреимуществомPolReID1077 является также использование видеоданных, полученных при внешнем и внутреннем наблюдении в большом количестве различных мест съемки. Поэтому изображения людей в созданном наборе характеризуются вариабельностью фона, яркостных и цветовых характеристик. Объединение созданного набора с существующими CUHK02, CUHK03, Market-1501, DukeMTMC-ReID и MSMT17 позволило получить 109 772 изображения для обучения. Увеличение разнообразия сформированных примеров достигается за счет применения к ним циклического сдвига, исключения цветности и замещения фрагмента уменьшенной копией другого изображения. Представлены результаты исследований по оценке точности реидентификации для свёрточных нейронных сетей ResNet-50 и DenseNet-121 при их тренировке с использованием предложенного подхода для формирования обучающей выборки.