Рассмотрена ключевая область оптимизации на основе искусственного интеллекта (ИИ), применяемого к навигационным датчикам микроэлектромеханических систем (МЭМС). Основная цель - улучшение пользовательского опыта. Используя комплексный подход, исследуются методы, основанные на искусственном интеллекте, включающие слияние датчиков, адаптивную фильтрацию, калибровку, компенсацию, прогнозное моделирование и энергоэффективность. Через строгое проведение кейс-исследований и использование эмпирических данных данное исследование подтверждает значительные достижения, включая повышенную точность, снижение энергопотребления, увеличение надежности и усиление удовлетворенности пользователя, в различных приложениях, таких как автономные транспортные средства, внутреннее определение положения, носимые устройства и беспилотные системы. В заключении данное исследование подчеркивает трансформационный потенциал оптимизации на основе ИИ в навигационных датчиках МЭМС, признавая при этом наличие постоянных вызовов, таких как вычислительная сложность, доступность данных и обработка в реальном времени проведения дальнейших исследований, ориентированных на инновационные методологии ИИ, их интеграцию с передовыми технологиями с условием соблюдения принципов дизайна, ориентированных на человека, и установление строгих стандартов оценки. Подобные исследования позволят использовать весь потенциал механизмов оптимизации на основе методов ИИ, внедряя передовые и ориентированные на пользователя навигационные системы и в конечном итоге повышая уровень удобства пользователей в различных областях применения подобных систем.