Цель данной работы состоит в том, чтобы разработать систему ИТ-диагностики болезни Паркинсона (БП) с удаленным доступом на базе сети Интернета вещей (IoT). Авторы ранее разработали метод комплексного распознавания болезни Паркинсона с использованием машинного обучения, маркерах анализа голоса и изменениях в движениях пациента. Два общедоступных набора данных (sound, action) были выбраны в качестве экспериментальных. В статье приведена его реализация на базе сети IoT. Разработка сети выполнена с использованием OSTIS (Open Semantic Technology for Intelligent Systems). В сети IoT смартфон является точкой ввода и предварительной обработки двух наборов
данных, включая извлечение признаков из аудиозаписи голоса пациента и его двигательной активности.
Передача данных осуществляется через локальный сервер Flask, действующий как канал для пересылки
функциональных данных на сервер OSTIS. Сервер OSTIS обрабатывает данные, полученные с локального
сервера Flask, и использует агента прогнозирования нейронной сети для распознавания БП. Этот агент загружает признаки, извлеченные из голоса и движения пациента, и делает прогнозы на основе обученной нейронной сети, связывая эти прогнозы со знаниями в системе OSTIS, и сохраняет их в базе данных. Результатом исследования является архитектура и алгоритмы работы сети IoT. Рабочий процесс всей системы включает в сбор и предварительную обработку данных устройствами Интернета вещей (смартфоном, датчиками движения) последующую передачу данных на локальный сервер Flask, дальнейшую пересылку на сервер OSTIS, обработку модели нейронной сети агентом нейросетевого
предсказателя и, в конечном счете, связывание обработанных результатов с графом знаний и сохранение их в системе.
Система удаленной ИТ-диагностики БП обеспечивает обработку данных пациентов в режиме реального времени, распознавание признаков заболевания в сети Интернета вещей, поддержки расширенного анализа и принятия решений по дальнейшему лечению.