Исследуется гиперболическое уравнение с произвольным количеством потенциалов, на которые действуют операторы сдвига в произвольных направлениях. Дифференциально-разностные уравнения возникают в различных приложениях, не покрываемых классической теорией дифференциальных уравнений. Кроме того, они представляют значительный интерес и с теоретической точки зрения, поскольку нелокальная природа таких уравнений порождает различные эффекты, не возникающие в классическом случае. Мы находим условие на вектор коэффициентов при нелокальных членах уравнения и на векторы сдвигов потенциалов, обеспечивающее глобальную разрешимость рассматриваемого уравнения. Накладывая указанное условие на уравнение и применяя классическую схему Гельфанда - Шилова, мы строим в явном виде трехпараметрическое семейство гладких глобальных решений изучаемого уравнения.