Physical theories in hypercomplex geometric descriptionCompact description is given of algebras of poly-
numbers: quaternions, bi-quaternions, double
Structure of hypercomplex units and exotic numbers as sections of Bi-quaternionsA survey of all families of
hypercomplex (HC-)
numbers is suggested with emphasis on exotic sets
Hypercomplex algebraic structures originating on a set of one-dimensional elements and
hypercomplex numbers with units built of the initial simple elements. It is demonstrated that this fundamental
Commutative Hypercomplex Numbers and the Geometry of Two Sets is the
classification of such geometries. In this paper, by complexing with associative
hypercomplex numbers,
functions
Generalized Bernoulli Numbers and Polynomials in the Context of the Clifford AnalysisIn this paper, we consider the generalization of the Bernoulli
numbers and polynomials for the case