Estimate of the norm of the Lagrange interpolation operator in the multidimensional weighted Sobolev space of convergence is of the order of the
best approximation of this function by algebraic
polynomials in this space.
Estimate of the norm of the Lagrange interpolation operator in the multidimensional weighted Sobolev space of convergence is of the order of the
best approximation of this function by algebraic
polynomials in this space.
Estimate of the norm of the Lagrange interpolation operator in a multidimensional Sobolev space polynomials converge to the interpolated function and their rate of convergence is of the order of the
best Метод операторного полинома наилучшего равномерного приближения решения матричных уравненийIn 1959, S. J. Alper developed a
polynomial for the
best uniform
approximation of the function 1/(a
Эксперименты с итерационным методом операторного полинома наилучшего приближения on the algebraic
polynomial of the
best uniform
approximation (PNP method), suitable for solving linear operator
Sharp estimates for the polynomial approximation in weighted Sobolev spaces approximation of functions by algebraic
polynomials on an interval, the half-line, and the entire line
Estimate of the norm of the Lagrange interpolation operator in a multidimensional Sobolev space polynomials converge to the interpolated function and their rate of convergence is of the order of the
best Sharp estimates for the polynomial approximation in weighted Sobolev spaces approximation of functions by algebraic
polynomials on an interval, the half-line, and the entire line