Работа описывает применение Physics Informed Neural Network (PINN) для решения уравнений в частных производных. Physics Informed Neural Network - это вид глубокого обучения, который учитывает физические законы для более эффективного решения физических уравнений по сравнению с классическими методам. Наибольший интерес представляет решение уравнений в частных производных (УЧП), так как численные методы и классические методы глубокого обучения не эффективны и слишком сложно настраиваемы в случаях, когда необходимо учесть сложную физику процесса. Преимуществом PINN является то, что при обучении она минимизирует функцию потерь, которая учитывает ограничения системы и законы предметной области. В работе мы рассматриваем решение обыкновенных дифференциальных уравнений (ОДУ) и УЧП с помощью PINN, а затем сравниваем эффективность и точность этого метода решения по сравнению с классическими. Решение реализовано на языке программирования Julia. Мы используем NeuralPDE.jl - пакет, содержащий методы решения уравнений в частных производный с помощью нейронных сетей, основанных на физике. Классический метод решения УЧП реализован посредством библиотеки DifferentialEquations.jl. В результате был проведен сравнительный анализ рассматриваемых методов решения для ОДУ и УЧП, а также получена оценка их производительности и точности. В этой статье мы продемонстрировали базовые возможности пакета NeuralPDE.jl и его эффективность по сравнению с численными методами.