Материалов:
1 005 012

Репозиториев:
30

Авторов:
761 409

По вашему запросу найдено документов: 27409

Страница 2 из 2741

Rings over which every module is an I*0-module projective module and a V -module.

CS-Rickart modules n ∈ N. We show that every finitely generated projective right R-module will to be a CS

CS-Rickart modules describe the rings over which each finitely generated projective module is CS-Rickart module. The presented

Modules which are invariant under nilpotents of their envelopes and covers-coinvariant right module with M/J(M) square-full, then M is quasi-projective. Some characterizations and structures

Fully idempotent homomorphismsFor arbitrary modules A and B we introduce and study the notion of a fully idempotent Hom (A, B

CS-Rickart modules n ∈ N. We show that every finitely generated projective right R-module will to be a CS

Simple-Direct Modules Over Formal Matrix RingsAbstract: In the present paper, we study simple-direct-injective modules and simple-direct-projective

Rings over which every module is an I*0-module projective module and a V -module.

Generating infinitesimal almost projective transformations in the tangent bundle of a general space of paths by projective transformations on the baseWe obtain conditions under which an almost projective infinitesimal transformation on the tangent

Modules close to SSP- and SIP-modules and J(R) = Z(RR) if only if every finitely generated projective module is a CSRickart module which

Страница 2 из 2741