Анализ температурных полей в скважине на основе численного обращения ИзегераФилиппов, А. И.,
Зеленова, М. А.,
Щеглова, Е. П.,
Filippov, A. I.,
Zelenova, M. A.,
Scheglova. E. P. for small time asymptotics. Numerical inversion of
Laplace –
Carson transform is compared to analytical
Поле давления в пласте при заданном дебите скважиныFilippov, A. I.,
Akhmetova, O. V.,
Kovalskiy, A. A.,
Zelenova, M. A.,
Филиппов, А. И.,
Ахметова, О. В.,
Ковальский, А. А.,
Зеленова, М. А. presented an exact solution of the problem in the space of
Laplace-Carson integral
transformation Поле давления в пласте и скважине с учетом динамического уровня при отборе и последующей остановкеФилиппов, А. И.,
Ахметова, О. В.,
Зеленова, М. А.,
Filippov, A. I.,
Akhmetova, O. V.,
Zelenova, M. A. solution of the problem in dimensionless variables, the
Laplace –
Carson integral
transformation The optimal recovery of a function from an inaccurate information on its k-plane transform the information on its κ-plane
transform, measured with an error. We present the error of the optimal recovery
On the Laplace integral representation of multivariate Mittag-Leffler functions in anomalous relaxation of the Mittag-Leffler functions and their multivariate generalizations in the form of the
Laplace integrals
Laplace-Borel Transformation of Functions Holomorphic in the Torus and Equivalent to Entire Functions is illustrated by investigations of
Laplace--Borel
transformation of functions of
the mentioned class.
The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space in the infinite domain with non-zero initial condition and vanishing condition at infinity. Based on
Laplace On the Laplace integral representation of multivariate Mittag-Leffler functions in anomalous relaxation of the Mittag-Leffler functions and their multivariate generalizations in the form of the
Laplace integrals