СОВЕРШЕНСТВОВАНИЕ МЕТОДОВ ОПРЕДЕЛЕНИЯ ЦЕНЫ НА ПРОДУКЦИЮ, ВЫПУСКАЕМУЮ ПО ПРОГРАММЕ ИМПОРТОЗАМЕЩЕНИЯ, in particular the
k-nearest neighbors algorithm (KNN)
method and neural networks when modernizing existing
Fast and Accurate Patent Classification in Search Engines approach, based on linguistically-supported
k-nearest neighbors. We experimentally evaluate
Нейросетевые методы сжатия векторов для задачи приближенного поиска ближайших соседей compression in the pipeline of approximate
nearest neighbor search. The evaluation was conducted on several
Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials against support vector machine (SVM), adaptive boosting (AdaBoost), random forest (RF), and
K-nearest