О центре разрешимого графа некоторых простых неабелевых групп лиева типа graph associated with
a finite
group G is
a simple
graph whose vertices are the prime divisors of |G
Solvable groups with restrictions on Sylow subgroups of the Fitting subgroupIn this paper, we study
solvable groups in which rn(F) is at most 2. In particular, we
investigated
О центре графа, определяемого подгруппами Шмидта конечной группыБычков, П.В.,
Каморников, С.Ф.,
Тютянов, В.Н.,
Bychkov, P.V.,
Kamornikov, S.F.,
Tyutyanov, V.N. -nilpotent
group whose proper subgroups are nilpotent. Schmidt
graph of
a finite
group G is
the prime
graph On derived π-length of a finite π-solvable group with supersolvable π-Hall subgroupIt is proved that if π-Hall subgroup is
a supersolvable
group then the derived π-length of
a π-
solvable Solvability of some integro-differential equations with the logarithmic LaplacianWe address the existence in the sense of sequences of solutions for
a certain integro
On solvability of regular equations in the variety of metabelian groupsWe study the
solvability of equations over
groups within
a given variety or another class of
groups Oт maximal subgroup of a finite solvable subgroupLet H be
a non-normal maximal subgroup of
a finite
solvable group G, and
let q ∈ π(F (H
О перестановочности максимальных подгрупп с подгруппами Шмидта подгрупп с некоторыми подгруппами Шмидта.
A Schmidt
group is
a finite nonnilpotent
group in which
Algebraic lattices of solvably saturated formations and their applicationsIn each
group G, we select
a system of subgroups τ(G) and say that τ is
a subgroup functor if G
О p-сверхразрешимости конечной факторизуемой группы с примарными индексами сомножителей conditions for p-supersolubility of
a finite
group G = AB, where
A and B have cyclic Sylow p