Stability theorems for estimating the distance to a set of coincidence points are obtained for the distance to the set of coincidence points and to the set of
intersections of the
graphs On properties of coincidence points of mappings between (Q1, q2 )-quasimetric spaces to the coincidence points set and
intersection of the respective
graphs of the mappings. In addition, the stability
Towards Time-Optimal Any-Angle Path Planning With Dynamic ObstaclesPath finding is a well-studied problem in AI, which is often framed as
graph search. Any-angle path
On Intersection of primary subgroups in the group Aut(F4(2))On
Intersection of primary subgroups in the group Aut(F4(2))
Extensions and small subgraphs in a random distance graph of random distance
graphs. Previously, threshold probabilities for the properties of containing a fixed
Graph theory for modeling and analysis of the human lymphatic system the lymphatic vessels. We present a
graph theory-based approach to model and analyze the human lymphatic network
S-brane solutions with orthogonal intersection rulesA family of generalized composite
intersecting S-brane solutions with orthogonal
intersection rules