Для математической модели сплошной среды, в которой переменный коэффициент объёмного расширения (сжатия) является функцией только среднего напряжения, а переменный коэффициент сдвига − только функцией интенсивности касательных напряжений, рассматривается построение разрешающего дифференциального уравнения – физически нелинейного аналога уравнения Леви линейной теории упругости – физически-нелинейной теории упругости в напряжениях для случая плоской деформации. Вводя обычным образом функцию напряжений, физически нелинейный аналог уравнения Леви будет представлять собой физически нелинейный аналог бигармонического уравнения для случая плоской деформации.