Материалов:
1 005 012

Репозиториев:
30

Авторов:
761 409

Применение пороговых приближений для решения систем нелинейных уравнений в методе разделяющих плоскостей

Дата публикации: 2017

Дата публикации в реестре: 2020-03-03T19:06:34Z

Аннотация:

В методе разделяющих плоскостей предлагается перейти от системы линейных неравенств, эквивалентной нелинейному булеву уравнению, к системе линейных неравенств, являющейся следствием исходного уравнения. Вводится понятие импликативного k-приближения в пороговом базисе, которое характеризуется, с одной стороны, числом k линейных неравенств, а с другой стороны, дефицитом—мерой близости импликативного приближения к исходной системе неравенств. Предельный случай — 1-приближение, как и остальные, не является однозначным. Отказ от свойства импликативности позволяет ввести понятие статистического порогового приближения для булевой функции. Введённые понятия могут быть использованы для сокращения числа линейных неравенств в системе, порождённой исходным нелинейным уравнением, с сохранением возможности её решения.

Тип: статьи в журналах

Источник: Прикладная дискретная математика. Приложение. 2017. № 10. С. 165-168


Связанные документы (рекомендация CORE)