В методе разделяющих плоскостей предлагается перейти от системы линейных неравенств, эквивалентной нелинейному булеву уравнению, к системе линейных неравенств, являющейся следствием исходного уравнения. Вводится понятие импликативного k-приближения в пороговом базисе, которое характеризуется, с одной стороны, числом k линейных неравенств, а с другой стороны, дефицитом—мерой близости импликативного приближения к исходной системе неравенств. Предельный случай — 1-приближение, как и остальные, не является однозначным. Отказ от свойства импликативности позволяет ввести понятие статистического порогового приближения для булевой функции. Введённые понятия могут быть использованы для сокращения числа линейных неравенств в системе, порождённой исходным нелинейным уравнением, с сохранением возможности её решения.