Изучается устойчивость и динамика взаимодействия солитоноподобных решений обобщенного нелинейного уравнения Шредингера (GNLS), описывающего динамику огибающей модулированных нелинейных волн и импульсов (в том числе явления волнового коллапса и самофокусировки волновых пучков) в плазме (включая космическую), а также в нелинейных оптических системах с учетом неоднородности и нестационарности среды распространения. Уравнение GNLS используется и в других областях физики - таких, например, как теория сверхпроводимости и физика низких температур, гравитационные волны малой амплитуды на поверхности глубокой невязкой жидкости и др. Следует отметить, что 3-мерное уравнение 3-GNLS не является полностью интегрируемым, и его аналитические решения в общем случае не известны (за исключением, пожалуй, гладких решений типа уединенных волн). Однако, используя ранее развитые нами подходы для других уравнений (GKP и 3-DNLS) системы BK (Belashov-Karpman system), можно аналитически исследовать устойчивость возможных решений уравнения 3-GNLS, а динамику взаимодействия солитонов изучить численно. В работе и реализуется такой подход. Аналитически получены достаточные условия устойчивости 2-мерных и 3-мерных солитоноподобных решений и численно изучены случаи устойчивой и неустойчивой (с образованием бризеров) эволюции импульсов различной формы, а также взаимодействие 2- и 3-импульсных структур, приводящее к формированию устойчивых и неустойчивых решений. Полученные результаты могут быть полезны в многочисленных приложениях в физике ионосферной и магнитосферной плазмы и многих других областях физики.