Исследование для заданного оператора B обратных операторов к B − λI, т. е. резольвенты B, является одним из классических разделов теории операторов. При спектральном значении λ такой оператор необратим, но часто он оказывается правосторонне обратимым. В таком случае к оператору обычно присоединяется краевое условие и рассматриваются краевые задачи, решение которых эквивалентно построению правосторонних резольвент для исходного оператора. В последние годы в работах ряда авторов исследовались правосторонние резольвенты и обсуждалось их сходство и отличия от классической резольвенты. В связи с этим представляет интерес построение правосторонних резольвент для конкретных операторов. Целью статьи является построение правосторонней резольвенты для дискретного оператора взвешенного сдвига, состоящей из операторов, образы которых совпадают с заданным подпространством Lη. Построение такой резольвенты эквивалентно решению краевой задачи для разностного уравнения. Резольвента определена только в некоторой части комплексной плоскости и нашей задачей является описание ее области определения. В работе по заданному подпространству Lη построена вспомогательная аналитическая функция Qη, с ее помощью построена резольвента рассматриваемой краевой задачи и показано, что область определения резольвенты состоит из явно заданного кольца, за исключением тех точек, в которых аналитическая функция Qη обращается в нуль. Результат дает решение задачи в общем виде для произвольного пространства.