Рассматривается реализация функций трёхзначной логики схемами из ненадёжных функциональных элементов в полном базисе, состоящем из функции Вебба. Предполагается, что элементы схемы переходят в неисправные состояния независимо друг от друга, подвержены однотипным константным неисправностям типа 2 на выходах. Доказано, что любую функцию трёхзначной логики можно реализовать схемой, функционирующей с ненадёжностью асимптотически не больше 3е при е 0. Найден класс функций (он содержит почти все функции трёхзначной логики), каждую из которых нельзя реализовать схемой, ненадёжность которой асимптотически меньше 3е при е 0. Таким образом, доказано, что почти любую функцию трёхзначной логики можно реализовать асимптотически оптимальной по надёжности схемой, функционирующей с ненадёжностью асимптотически равной 3е при е 0.