Рассмотрены квантово-механические свойства сильно нелинейного квантового осциллятора в модели Пёшля-Теллера. Изучен энергетический спектр модели и его зависимость от параметра конфайнмента, или эффективной ширины потенциала. На основе теоремы Гельмана-Фейнмана получен оператор давления для указанной модели, который вместе с энергетическим спектром изучен в двух основных приближениях: частицы в ящике и линейного гармонического осциллятора для больших и малых значений главного квантового числа n соответственно; получено также значение критического значения nкр. Рассмотрены также квазиклассическое приближение и теория возмущений для обоих предельных случаев. Полученные результаты предназначены для использования в последующих термодинамических приложениях - прежде всего, обобщения хорошо известного результата Блоха для линейного гармонического осциллятора в термостате. С этой целью необходимо построить матрицу плотности для осциллятора Пёшля-Теллера для проведения полного цикла Карно.