Материалов:
1 005 012

Репозиториев:
30

Авторов:
761 409

Вытекающие моды в планарных диэлектрических волноводах

Дата публикации в реестре: 2021-08-05T20:58:35Z

Аннотация:

В работе предложено новое аналитическое и численное решение волноводной задачи для вытекающих мод планарного диэлектрического симметричного волновода. В качестве асимптотических граничных условий использовались граничные условия, соответствующие модели Гамова-Зигерта. Поставленная начально-краевая задача допускает разделение переменных. Возникающая в результате разделения переменных задача отыскания собственных мод открытых трёхслойных волноводов формулируется как задача Штурма-Лиувилля с соответствующими граничными и асимптотическими условиями. В случае направляемых и излучательных мод задача Штурма-Лиувилля является самосопряжённой, поэтому её собственные значения - действительные величины для диэлектрических сред. Поиск собственных значений и собственных функций, соответствующих вытекающим модам, сопряжён с рядом трудностей: задача на собственные значения и собственные функции не является самосопряжённой, поэтому собственные значения являются комплексными величинами, таким образом, задача нахождения собственных значений и собственных функций связана с нахождением комплексных корней нелинейного дисперсионного уравнения. В работе для решения этой задачи использовался метод минимизации нулевого порядка. В работе дан анализ рассчитанных распределений напряжённости электрического поля первых трёх вытекающих мод, показывающий возможности и преимущества предложенного подхода.

Тип: Article

Права: open access

Источник: Discrete and Continuous Models and Applied Computational Science


Связанные документы (рекомендация CORE)