Изучается гипотеза разрешимости полной группы автоморфизмов недезарговой полуполевой проективной плоскости конечного порядка (вопрос 11.76 в Коуровской тетради). Как известно, эта гипотеза редуцируется к разрешимости группы автотопизмов. Изучая подгруппы четного порядка в группе автотопизмов, мы применяем метод с использованием регулярного множества над полем простого порядка. Показано, что для элементарной абелевой 2-подгруппы в группе автотопизмов выбор базиса линейного пространства позволяет построить матричное представление порождающих элементов, единообразное для полуполевых плоскостей четного и нечетного порядка и не зависящее от размерности пространства. В качестве следствия указано условие, связывающее порядок полуполевой плоскости и порядок элементарной абелевой 2-подгруппы автотопизмов. Выделена бесконечная серия полуполевых плоскостей нечетного порядка, не допускающих подгруппу автотопизмов, изоморфную группе Судзуки Sz(2^{2n+1}). В случае четного порядка плоскости получено условие на ядро подплоскости, поточечно фиксируемой автотопизмом порядка два. Выбор такого ядра в качестве основного поля приводит к отсутствию в группе линейных автотопизмов подгруппы, изоморфной знакопеременной группе A4. Основные доказанные результаты являются техническими и необходимы для дальнейшего изучения подгрупп четного порядка в группе автотопизмов конечной недезарговой полуполевой плоскости. Результаты согласуются с приведенными в статье примерами 3-примитивных полуполевых плоскостей порядка 81, а также с хорошо известными двумя примерами неизоморфных полуполевых плоскостей порядка 16.